MATH 2050 -Consequences of the Completeness Property
(Reference: Battle § 2.4)
Completeness Property: Every $\phi \neq S \subseteq \mathbb{R}$ which is bounded above must have a supremum in \mathbb{R}.

Archimedean Property: \mathbb{N} is NOT bold above.
Pf: Suppose NOT. ie. IN is bod above.
By Completeness Property, $\sup \mathbb{N}=: u \in \mathbb{R}$ exists.
So, $u-1<n^{\prime}$ for some $n^{\prime} \in \mathbb{N}$.

$$
\Rightarrow \quad u<n^{\prime}+1 \in \mathbb{N}
$$

$\Rightarrow u$ is NOT an upper bd for \mathbb{N}° Contradiction!

Corollaries:
(i) $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$

(ii) $\forall \varepsilon>0, \exists n \in \mathbb{N}$ s.t. $0<\frac{1}{n}<\varepsilon$
(iii) $\forall y>0 . \exists!n \in \mathbb{N} x \cdot n-1<y \leq n$
unique
Ex: Prove the se!

Recall: $\sqrt{2} \notin \mathbb{1} \not \subset \mathbb{R}$
Tho: (Existence of $\sqrt{2}$ in \mathbb{R})
$\exists x \in \mathbb{R}$ st. $x>0$ and $x^{2}=2$.
Picture:
Proof: Let $S:=\left\{s \in \mathbb{R}: S \geqslant 0, s^{2}<2\right\}$
Claim 1: $S \neq \phi \quad(\because 0 \in S)$

Claim 2: S is bold above
Why? $\forall s \in S, S \geqslant 0$ and " $S^{2}<2<4=2^{2} \Rightarrow S \geqslant 0$ " S i.e 2 is an upper bed for S

By Completeness Property, $x:=\sup S \in \mathbb{R}$ exists.

- Claim 3: $x>0$ and $x^{2}=2$

Since $1 \in S$, and x is an upper bd for S.

$$
0<1 \leqslant x \quad \text { Thus, } x>0 \text {. }
$$

To prove $x^{2}=2$, we argue by contradiction.
Suppose NOT. by Trichotomy, either $x^{2}<2$ OR $x^{2}>2$.
Case 1: $x^{2}<2$
WANT: Find $n \in \mathbb{N}$ s.t. $x+\frac{1}{n} \in S$
ie. $\left(x+\frac{1}{n}\right)^{2}<2$.
This implies x is NOT an upper bod for S. contradicting $x=\sup S$.

甭。。

$$
\begin{aligned}
& \left(x+\frac{1}{n}\right)^{2}<2 \\
& x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}<2 \\
& x^{2}+\frac{2 x}{n}+\frac{1}{n}<2 \text { off ow }
\end{aligned}
$$

$$
\frac{1}{n}<\frac{2-x^{2}}{2 x+1}
$$

Now，by assumption $2-x^{2}>0$ ．
also $x>0 \Rightarrow 2 x+1>0$
Thus．$\frac{2-x^{2}}{2 x+1}>0$ ．
By Archimedean Property．$\exists n \in \mathbb{N}$ st．

$$
\begin{equation*}
0<\frac{1}{n}<\frac{2-x^{2}}{2 x+1} \tag{*}
\end{equation*}
$$

Then．for this n ．

$$
\begin{aligned}
&\left(x+\frac{1}{n}\right)^{2}=x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}} \\
&\left(\because \frac{1}{n^{2}} \leqslant \frac{1}{n}\right) \leqslant x^{2}+\frac{2 x}{n}+\frac{1}{n} \\
& \forall n \in \mathbb{N} \\
& 1=x^{2}+\frac{2 x+1}{n}<2
\end{aligned}
$$

Case 2：$x^{2}>2$ ．
Want：Find $m \in \mathbb{N}$ st．$x-\frac{1}{m}$ is an upper bd for S
Arch．Property $(\Rightarrow x$ is NoT the Least uppers bd．Contradicting $x=\sup S)$ ${ }^{W}$ Choose $m \in \mathbb{N}$ st．$\frac{1}{m}<\frac{x^{2}-2}{2 x} \quad\left(\because \frac{1}{m^{2}}>0\right)$

$$
\forall s \in S
$$

$$
\begin{equation*}
\left(x-\frac{1}{m}\right)^{2}=x^{2}-\frac{2 x}{m}+\frac{1}{m^{2}}>x^{2}-\frac{2 x}{m} \geqslant 2>s^{2} \tag{0}
\end{equation*}
$$

Thu: (Density of \mathbb{Q} in \mathbb{R})
For any $a, b \in \mathbb{R}$ st $a<b$.

$$
\exists x \in \mathbb{Q} \text { st. } a<x<b \text {. }
$$

Picture

Proof: Given $a, b \in \mathbb{R}^{0<} \mathfrak{r}<b$. then $b-a>0$. Step size By Archimedean Property. $\exists n \in \mathbb{N}$ sit $0<\left(\frac{1}{n}\right)<b-a$
Since $n a>0$, by Archimedean Property, Picture:

$$
m \in \mathbb{N} \text { st } m-1 \leqslant n a<m \text {. }
$$

Note: $\frac{1}{n}<b-a \Rightarrow n a+1<n b$

$$
m-1 \leqslant n a<m \Rightarrow m \leqslant n a+1<m+1
$$

Combining these two inequalities,

$$
n a<m \leq n a+1<n b
$$

Divide by $n \Rightarrow a<\frac{m}{n}<b$.

Cor: $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}
Pf: Fix any $a, b \in \mathbb{R}$, want: $\exists y \in \mathbb{R} \backslash Q$ st. $a<y<b$. ($a<b$).
Consider $\frac{a}{\sqrt{2}}<\frac{b}{\sqrt{2}}$ in \mathbb{R}. by density of \mathbb{Q} in \mathbb{R}.

$$
\begin{gathered}
\exists q \in \mathbb{Q} \quad \text { st } \quad \frac{a}{\sqrt{2}}<q<\frac{b}{\sqrt{2}} \\
\Rightarrow \quad a<\underbrace{q \cdot \sqrt{2}}_{\Phi \mathbb{Q}}<b
\end{gathered}
$$

