MATH 2050 - Consequences of the Completeness Property (Reference: Bartle § 2.4) Completeness Property: Eveny \$= S & iR which is bounded above must have a supremum in IR. Archimedean Property: IN is NOT bod above. <u>PF</u>: Suppose NOT, ie. IN is bod above. By Completeness Property, sup IN =: u e iR exists. So, u - 1 < n' for some $n' \in \mathbb{N}$. ⇒ u< n'+1 ∈ N => U is NOT an upper bd for IN " Contradiction!

(i) $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = D$ (ii) $\forall \epsilon > 0$, $\exists n \in \mathbb{N}$ st. $0 < \frac{1}{n} < \epsilon$ (iii) $\forall \forall > 0$, $\exists i \in \mathbb{N}$ st. $n - 1 < \forall < n$ imige Ex: Prove these!

Corollanies :

Recall:
$$\sqrt{2} \notin \mathbb{Q} \subseteq \mathbb{R}$$

Thm: (Existence of $\sqrt{2}$ in \mathbb{R})
 $\exists x \in \mathbb{R}$ st. $x > 0$ and $x^2 = 2$.
Profi: Let S := $\{s \in \mathbb{R} : s \ge 0, s^2 < 2\}$
Claim 1: $S \neq \phi$ (:: $0 \in S$)
Chaim 2: S is bod above.
Why? $\forall s \in S, S \ge 0$ and $(s^2 < 2 < 4 = 2^3) \Rightarrow S < 2^{11}$
i.e. 2 is an upper bod for S
By Completeness Property, $x := sup S \in \mathbb{R}$ exists.
* Claim 3: $x > 0$ and $x^2 = 2$
Since $1 \in S$, and x is on upper bod for S.
 $0 < 1 \le x$ Thus. $x \ge 0$.
To prove $x^2 = 2$, we argue by contradiction.
Suppose NoT. by Trichotomy, either $x^2 < 2$ OR $x^2 > 2$.
Case 1: $x^2 < 2$
WANT: Find $n \in \mathbb{N}$ st. $x + \frac{1}{n} \in S$
i.e. $(x + \frac{1}{n})^2 < 2$.
This implies x is NOT an upper bod for S.
Contradicting $x = sup S$.

Case 2: x2 > 2.

Want: Find $m \in iN$ s.t. $x - \frac{1}{m}$ is an upper bol for S

Arch. Property $(\Rightarrow) x$ is NOT the least upper bd. contradicting $x = \sup S$) We choose $m \in \mathbb{N}$ st. $\frac{1}{m} < \frac{x^2 - 2}{2x}$ ($::\frac{1}{m^2} > 0$) $\forall s \in S$ $(x - \frac{1}{m})^2 = x^2 - \frac{2x}{m} + \frac{1}{m^2} > x^2 - \frac{2x}{m} \geqslant 2 > S^2$

Thum: (Density of Q in R)
For ang a, b \in R st a < b.

$$\exists x \in Q$$
 st. $a < x < b$.
 $Proof:$ Given $a, b \in R$. Tacb. then $b - a > 0$. Step size
 $\exists y$ Archimedean Property, $\exists n \in \mathbb{N}$ st $0 < (f_n) < b - a$
Since $na > 0$. by Archimedean Property. Picture:
 $\exists m \in \mathbb{N}$ st $m - 1 \leq na < m$.
 $\underline{Note:} \quad \frac{1}{n} < b - a \Rightarrow na + 1 < nb$
 $m - 1 \leq na < m \Rightarrow m \leq na + 1 < m + 1$
Combining these two inequalities.
 $na < m \leq na + 1 < nb$
Divide by $n \Rightarrow a < (f_n) < b$.
 $Cor: R \setminus Q$ is dense in R
Pf: Fix any a, b \in R. want: $\exists y \in R \setminus R$ st. $a < y < b$.
 $(a < b)$.
Consider $\frac{a}{f_2} < \frac{b}{f_2}$ in R. by density of Q in R.
 $\exists q \in Q$ st. $\frac{a}{f_2} < g < \frac{b}{f_2}$
 $\Rightarrow a < q \cdot f_2 < b$

٩

-